Research Description
Research:
(1) Combinatorial data analysis of individual differences based on multiple proximity matrices
(2) Machine Learning / Scaling, Clustering and Classification
(3) Cognitive Diagnosis / Q-Matrix Theory
Selected Publications:
Chiu, C.-Y., Köhn, H. F., & Ma, W. (2023). Commentary on “Extending the basic local independence model to polytomous data” by Stefanutti, de Chiusole, Anselmi, and Spoto. Psychometrika, 88(2), 656-671.
Köhn, H. F., & Chiu, C.-Y. (2021). A unified theory of the completeness of Q-matrices for the DINA model. Journal of Classification, 38, 500–518.
Chiu, C.-Y., & Köhn, H. F. (2019). Consistency theory for the General NonParametric Classification Method. Psychometrika, 84, 830–845.
Köhn, H. F., & Chiu, C.-Y. (2019). Attribute hierarchy models in cognitive diagnosis: Identifiability of the latent attribute space and conditions for completeness of the Q-matrix. Journal of Classification, 36, 541–565.
Köhn, H. F., & Chiu, C.-Y. (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. Psychometrika, 82, 112–132.
Chiu, C.-Y., & Köhn, H. F. (2016). The Reduced RUM as a logit model: Parameterization and constraints. Psychometrika, 81, 350–370.
Köhn, H. F. (2011). A review of multiobjective programming and its application in quantitative psychology. Journal of Mathematical Psychology, 55, 386–396.
Köhn, H. F., Steinley, D., & Brusco, M. J. (2010). The p-median model as a tool for clustering psychological data. Psychological Methods, 15, 87–95.